On the algebraic models of lambda calculus

نویسنده

  • Antonino Salibra
چکیده

The variety (equational class) of lambda abstraction algebras was introduced to algebraize the untyped lambda calculus in the same way Boolean algebras algebraize the classical propositional calculus. The equational theory of lambda abstraction algebras is intended as an alternative to combinatory logic in this regard since it is a rst-order algebraic description of lambda calculus, which allows to keep the lambda notation and hence all the functional intuitions. In this paper we show that the lattice of the subvarieties of lambda abstraction algebras is isomorphic to the lattice of lambda theories of the lambda calculus; for every variety of lambda abstraction algebras there exists exactly one lambda theory whose term algebra generates the variety. For example, the variety generated by the term algebra of the minimal lambda theory is the variety of all lambda abstraction algebras. This result is applied to obtain a generalization of the genericity lemma of nitary lambda calculus to the in nitary lambda calculus. Another result of the paper is an algebraic proof of consistency of the in nitary lambda calculus. Finally, some algebraic constructions by Krivine are generalized to lambda abstraction algebras. c © 2000 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

What is a Model of the Lambda Calculus?

An elementary, purely algebraic definition of model for the untyped lambda calculus is given. This definition is shown to be equivalent to the natural semantic definition based on environments. These definitions of model are consistent with, and yield a completeness theorem for, the standard axioms for lambda convertibility. A simple construction of models for lambda calculus is reviewed. The a...

متن کامل

Lambda Calculus: Models and Theories

In this paper we give an outline of recent results concerning theories and models of the untyped lambda calculus. Algebraic and topological methods have been applied to study the structure of the lattice of λ-theories, the equational incompleteness of lambda calculus semantics, and the λ-theories induced by graph models of lambda calculus.

متن کامل

A typed, algebraic, computational lambda-calculus

Lambda-calculi with vectorial structures have been studied in various ways, but their semantics remain mostly untouched. The main contribution of this paper is to provide a categorical framework for the semantics of such algebraic lambda-calculi. We first develop a categorical analysis of a general simply-typed lambda-calculus endowed with a structure of module. We study the problems arising fr...

متن کامل

Completeness of algebraic CPS simulations

The algebraic lambda calculus (λalg) and the linear algebraic lambda calculus (λlin) are two extensions of the classical lambda calculus with linear combinations of terms. They arise independently in distinct contexts: the former is a fragment of the differential lambda calculus, the latter is a candidate lambda calculus for quantum computation. They differ in the handling of application argume...

متن کامل

Direct models of the computational lambda-calculus

We introduce direct categorical models for the computational lambda-calculus. Direct models correspond to the source level of a compiler whose target level corresponds to Moggi’s monadic models. That compiler is a generalised call-by-value CPS-transform. We get our direct models by identifying the algebraic structure on the Kleisli category that arises from a monadic model. We show that direct ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 249  شماره 

صفحات  -

تاریخ انتشار 2000